Anterior Approaches for Lumbar Interbody Fusion

Glen Manzano, MD
Anterior Techniques

- ALIF
- Lateral transpsoas approaches (XLIF/DLIF)
Anterior Approaches - Contraindications

• ALIF
 • Contraindications
 • Calcified aorta
 • Prior vascular reconstructive surgery
 • Prior intra-abdominal or retroperitoneal surgery
 • History of severe pelvic inflammatory disease
 • Prior anterior spinal surgery

• Transpsoas
 • Contraindications
 • At L5/S1 and sometimes at L4/5 because of obstruction from iliac crest
 • Prior retroperitoneal surgery or scarring
Clinical Presentation DDD

• 20 -50 year-old, recurrent or persistent back pain

• Pain
 • Dull ache in lower back
 • Often involves buttocks and sacroiliac joints
 • Exacerbated with flexion
 • Worsened with prolonged sitting or walking
 • Radiculopathy may be seen late in disease due to disc collapse
 • Claudication only seen with concomitant stenosis

• Exam
 • Decreased back range of motion, flexion
 • Paraspinal muscle and sacroiliac joint tenderness
 • Normal sensorimotor exam
 • Normal reflexes
 • Generally negative straight leg raise
Radiographic Findings DDD

- Plain X-rays
 - Disc space narrowing
 - Endplate sclerosis
 - Osteophytes
 - Advanced – secondary spondylolisthesis
Radiographic Findings DDD

• MRI
 • “High intensity zone” (annular tear)
 • Radial tear from nucleus to outer posterior annulus
 • Dark disc
 • Endplate signal changes (Modic)
 • Stage I - edema
 • Dark on T1, bright on T2
 • Stage II - fatty degeneration
 • Bright on T1, intermediate on T2
 • Stage III – advance degenerative changes and endplate sclerosis
 • Dark on T1 and T2

January 2003

- Committee formed by the leadership of the American Association of Neurological Surgeons and Congress of Neurological Surgeons Joint Section on Disorders of Spine and Peripheral Nerves

- 12 orthopedic and neurosurgical spine surgeons active in the Joint Section and/or North American Spine Society

- Perform an evidence-based review of the literature on lumbar fusion for degenerative spine disease and formulate treatment recommendations
One or Two-Level Degenerative Disease without Stenosis or Spondylolisthesis

- **Standard**
 - Lumbar fusion recommended for patients with disabling low back pain due to one or two-level degenerative disease without stenosis or spondylolisthesis

- **2001 Fritzell et al.**
 - 294 surgical candidates randomized; 2-year follow-up
 - PT, education, pain relieving measures vs. PLF, PLF + pedicle screws, or interbody fusion + PLF + pedicle screws

 - Surgical group statistically significant better results in:
 - Outcome measures (pain VAS, ODI, Million VAS, GFS)
 - Return to work status
 - Patient satisfaction
 - Independent analysis by second spine surgeon

- **Option**
 - Intensive physical therapy and cognitive therapy
Fusion for DDD

- Posterolateral fusion
 - Patients with some level of residual discogenic pain due to micromotion

Eur Spine J. 2008 December; 17(Suppl 4): 428–431
Fusion for DDD

- **Interbody techniques**
 - Remove pain generator

- Large surface area for fusion where majority of spinal load bearing occurs
 - 90% of the surface area
 - 80% of the load

- Compressive force through graft

- Correction coronal and sagittal alignment
History – Minimally Invasive Spine Surgery

1829: Lumbar Laminectomy for Discectomy (Smith)
1893: Lumbar Laminectomy for Stenosis (Lane)
1911: Lumbar Fusion (Albee, Hibbs)
1925: Cervical Laminectomy for Discectomy (Elsberg)
1933: Anterior Lumbar Interbody Fusion – ALIF (Burns)
1939: Internal Spine Fixation (Hadra)
1952: Posterior Lumbar Interbody Fusion – PLIF (Cloward)
1955: ACDF (Robinson)
1958: ACDF (Cloward)
1966: Lumbar Artificial Disc Replacement – ADR (Fernstrom)
1967: Lumbar Microdiscectomy (Yasargil)
1982: Transforaminal Interbody Fusion – TLIF (Harms)
1983: Thoracic Discectomy (Benjamin)
1969: Chymopapain Chemonucleolysis (Smith)
1975: Percutaneous Nucleotomy (Hijikata)
1982: Percutaneous Pedicle Screws (Magerl)
1984: Laser Percutaneous Discectomy - LPD (Ascher)
1985: Automated Percutaneous Lumbar Discectomy - APLD (Maroon, Onik)
1987: Lumbar Arthroscopic Discectomy (Kambin)
1987: Vertebroplasty (Galibert)
1991: Laparoscopic Anterior Lumbar Discectomy (Obencahn)
1993: Percutaneous Facet Fusion (Wang)
1994: MIS-Thoracic Discectomy (Horowitz)
1995: MIS-ALIF (Mathews, Zucherman)
1997: Microendoscopic Discectomy - MED (Foley)
1998: Lateral Transpsoas Approach-DLIF, XLIIF (McAfee, Pimenta)
1999: MIS-Cspine-odontoid Screw Placement (Horgan)
2000: Intradiscal Electrothermy - IDET (Saul)
2000: MIS-Cervical Laminoforaminary (Roh)
2000: Kyphoplasty (Wong)
2001: Sextant Percutaneous Pedicle Screw System (Foley)
2002: MIS-Lumbar Laminectomy for Stenosis (Guiot, Khoo, Palmer)
2002: MIS-PLIF (Khoo)
2003: Tubular Discectomy using Microscope-METRX (Foley)
2004: Transaxial Approach (Cragg)
2004: MIS-Cervical Laminoplasty (Perez-Cruet)
2006: Interspinous Device-XSTOP (Kondrashov)
2006: MIS-TLIF (Holly)
2008: MIS-ACDF (Ruetten)
2008: MIS-Cervical Nucleoplasty (Li)

Oppenheimer et al Neurosurg Foc 2009
Technical Goals LIF

- Complete discectomy
- Place large graft
 - Restoration of disc height
 - Indirect decompression
 - Restablish/maintain lordosis
 - Maximize surface area for fusion
 - Minimize risk of subsidence
PLIF/TLIF

- Posterior interbody techniques (PLIF TLIF)
 - Problems
 - Muscle dissection, denervation
 - Acute postop pain
 - Blood loss
 - Longer length of stay
 - Narcotic requirements
 - Limited postop mobility
 - Perioperative complications
 - Chronic dysfunction
 - Muscle atrophy
 - Core deconditioning
 - Chronic pain
• Posterior interbody techniques (PLIF TLIF)

• Problems

 • Limited window to disc space
 • Thecal sac/nerve root retraction
 • Weakness (2-7%)
 • Postop neuralgia (5%)

• Dural tears (5-20%)
• Posterior interbody techniques (PLIF TLIF)

• Problems

• Graft size vs. nerve root injury vs endplate fracture
 • Suboptimal restoration of disc height and surface area for fusion

• Poor visualization of disc space/endplates
 • Limited endplate preparation for fusion
 • Endplate damage/fractures graft subsidence

• Time

• Blood loss
Comparison Implant Dimensions

<table>
<thead>
<tr>
<th>IMPLANT TYPE</th>
<th>HEIGHT (mm)</th>
<th>ANTERO-POSTERIOR (mm)</th>
<th>MEDIO-LATERAL (mm)</th>
<th>LORDOSIS (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLIF</td>
<td>8 – 16</td>
<td>18 - 26</td>
<td>45 - 60</td>
<td>0 - 10</td>
</tr>
<tr>
<td>ALIF</td>
<td>10 - 20</td>
<td>23 - 30</td>
<td>32 - 42</td>
<td>8 - 12</td>
</tr>
<tr>
<td>PLIF, TLIF</td>
<td>6 - 12</td>
<td>22 - 32</td>
<td>8 - 10</td>
<td>0 - 8</td>
</tr>
</tbody>
</table>
Advantages Anterior Approaches

• More complete discectomy

• Better endplate preparation
Advantages Anterior Approaches

- Larger graft placement without manipulation of nerve roots
- Deformity correction
- Indirect decompression
- Greater fusion surface area
Advantages Anterior Approaches

- Preservation of posterior stabilizing structures
 - Interspinous ligaments
 - Facet capsules

- No muscle disruption
 - Postop muscle atrophy
 - Chronic pain
ALIF - Complications

• Rates variable – highly surgeon dependent

• Vascular complications of exposure for anterior lumbar interbody fusion.

• 212 ALIF exposures

• 2% rate of “serious” vascular complication
 • 1 arterial injury required thrombectomy and stent
 • 4 venous injuries required multi-suture repair
 • No mortalities
ALIF - Complications

- Retrograde ejaculation
 - Most series < 1% to 7%
 - Much higher with transperitoneal approaches and with laparoscopic approaches
 - Blunt dissection versus electrocautery
 - Large majority of patients recover within 6 – 12 months
- Bowel
- Ureter
Extreme Lateral - Complications

- Damage to lumbosacral plexus which progressively migrates anteriorly beginning at L1/2 level
- Psoas muscle injury and pain
- Traction injury to plexus postop dysesthesias
Extreme Lateral - Complications

- New procedure introduced 2001
 - Reporting of complications has been inconsistent 3% - 60%)
 - Genitofemoral, ilioinguinal or lateral femoral cutaneous nerve injuries
 - Thigh numbness, paresthesias
 - Femoral nerve
 - Leg weakness

- An analysis of postoperative thigh symptoms after minimally invasive transpsoas lumbar interbody fusion.
 - Neurosurg Spine 15:11–18, 2011 Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
 - 62% patients had thigh symptoms postop - mostly numbness and dysesthesias
 - 23% had weakness
 - 50% had complete resolution at 3 months
 - 90% complete resolution at 1 year.
Extreme Lateral - Complications

- **Learning curve**
 - Supra-psoas Shallow Docking in Lateral Interbody Fusion
 Neurosurgery 73[ONS Suppl 1]:ons48-ons52, 2013
 - Avoid blind dilation through psoas muscle fibers

- **Complications in 775 XLIF cases.**
 - WB Rodgers. Spine Vol 10 (9). Supplement S95
 - 7.4% overall complication rate
 - 4 neural complications
• Outcomes After ALIF vs TLIF For Treatment of Symtomatic L5-S1 Spondylolisthesis: A Prospective, Multi-Institutional Comparative Effectiveness Study

 Neurosurgery. 60():171, August 2013

 Higher complication rates for TLIF (12.3 vs 7.8%)

 ALIF more rapid reduction in 1-year back and leg pain VAS scores

• Comparison of anterior- and posterior-approach instrumented lumbar interbody fusion for spondylolisthesis

 Adjacent level disease in 44% of ALIF and 83% of PLIF
Conclusions

• Both anterior and posterior approaches for interbody fusion are associated with good fusion rates and outcomes in patients with symptomatic lumbar degenerative disease.

• Anterior approaches allow better access to and visualization of the disc and endplates which facilitate:
 • More complete discectomy
 • Larger surface area for fusion
 • Better endplate preparation
 • Larger graft placement for disc height restoration and lordosis

• With a good access surgical team, the complications associated with ALIF are minimal

• Extreme lateral interbody fusion is a relatively new procedure. As surgeons become more proficient in the operation and as surgical technique is refined, sensory dysesthesias and psoas trauma associated with the procedure are becoming less prevalent.