Solitary Brain Metastases

Resection or Radiosurgery

Mel Field, MD
Florida Hospital Neuroscience Institute
Florida Hospital Minimally Invasive Brain Surgery Program
Orlando Neurosurgery
Disclosures

Consultant - Stryker Corp
Consultant - IMRIS, Inc
Disclosures

inherent biases

• Director - FH Gamma Knife Program
• Medical School - UF
 • Mentor / Advisor - Bill Friedman
• Residency- Univ. of Pittsburgh
 • Mentors - Dade Lunsford & Doug Kondziolka
Solitary Brain Mets

- Extensive literature exists on optimal treatment of solitary mets
- Surgery alone
- WBRT
- Radiosurgery alone
- WBRT
- WBRT alone
- Radiosurgery
- Surgery +
- Radiosurgery +
- Surgery +
Solitary Brain Mets

- No level 1 evidence exists showing a benefit of Radiosurgery over Surgery or Surgery over Radiosurgery, in spite of attempts
<table>
<thead>
<tr>
<th>Evidence classification</th>
<th>Levels of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I Evidence provided by one or more well-designed randomized controlled clinical trials, including overview (meta-analyses) of such trials</td>
<td>Level 1 Generally accepted principles for patient management, which reflect a high degree of clinical certainty (usually this requires Class I evidence which directly addresses the clinical questions or overwhelming Class II evidence when circumstances preclude randomized clinical trials)</td>
</tr>
<tr>
<td>Class II Evidence provided by well-designed observational studies with concurrent controls (e.g. case control and cohort studies)</td>
<td>Level 2 Recommendations for patient management which reflect clinical certainty (usually this requires Class II evidence or a strong consensus of class III evidence)</td>
</tr>
<tr>
<td>Class III Evidence provided by expert opinion, case series, case reports and studies with historical controls</td>
<td>Level 3 Other strategies for patient management for which the clinical utility is uncertain (inconclusive or conflicting evidence or opinion)</td>
</tr>
</tbody>
</table>
Recent trials

• Surgery versus radiosurgery to treat metastatic brain tumors
 Official Title: A Prospective, Randomized Trial Comparing Surgery Versus Radiosurgery for the Treatment of Metastatic Brain Tumors
 Status: Completed Clinicaltrials.gov Identifier: NCT00075166 Location: United States
 Sponsors and Collaborators: National Institute of Neurological Disorders and Stroke (NINDS)

• Surgery versus stereotactic radiosurgery in the treatment of single brain metastasis: a randomized trial
 Official Title: Surgery Versus Stereotactic Radiosurgery in the Treatment of Single Brain Metastasis: A Randomized Trial
 Status: Completed Clinicaltrials.gov Identifier: NCT00460395
 Principal Investigator: Frederick F. Lang, M.D., University Of Texas MD Anderson Cancer Center
 Location: United States Sponsors and Collaborators: M.D. Anderson Cancer Center

• A Trial Comparing Radiosurgery With Surgery for Solitary Brain Metastases
 Official Title: A Randomised Trial of Surgery Plus Whole Brain Radiotherapy (WBRT) Versus Radiosurgery Plus WBRT for Solitary Brain Metastases
 Status: Completed
 Clinicaltrials.gov Identifier: NCT00124761 Principal Investigator: Daniel Roos, FRANZCR, Royal Adelaide Hospital
 Location: Australia Sponsors and Collaborators: Royal Adelaide Hospital
Problem with existing trials

• Retrospective

• Inhomogeneous groups
 • RPA (Recursive Partitioning Analysis), tumor size, tumor location, tumor histology, single or multifraction radiosurgery, steroids, etc

• Small sample size
Role for Radiosurgery

• In spite of these limitations, existing literature does support the role of radiosurgery for certain patient populations.
 • Tumors in unresectable locations
 • Systemic comorbidities making surgery contraindicated
 • Uncontrolled systemic disease
 • Radioresistant tumors
Solitary Brain Metastasis

- Existing literature is fairly clear that the management of a solitary metastasis is not all surgical or radiosurgical.
• Discuss role of surgery for solitary brain metastasis and consideration for treatment algorithm
A RANDOMIZED TRIAL OF SURGERY IN THE TREATMENT OF SINGLE METASTASES TO THE BRAIN

Roy A. Patchell, M.D., Phillip A. Tibbs, M.D., John W. Walsh, M.D., Robert J. Dempsey, M.D., Yosh Maruyama, M.D., Richard J. Kryscio, Ph.D., William R. Markesbery, M.D., John S. Macdonald, M.D., and Byron Young, M.D.

Abstract To assess the efficacy of surgical resection of brain metastases from extracranial primary cancer, we randomly assigned patients with a single brain metastasis to either surgical removal of the brain tumor followed by radiotherapy (surgical group) or needle biopsy and radiotherapy (radiation group). Forty-eight patients (25 in the surgical group and 23 in the radiation group) formed the study group; 6 other patients (11 percent) were excluded from the study because on biopsy their lesions proved to be either second primary tumors or inflammatory or infectious processes.

Recurrence at the site of the original metastasis was less frequent in the surgical group than in the radiation group (5 of 25 [20 percent] vs. 12 of 23 [52 percent]; P<0.02). The overall length of survival was significantly longer in the surgical group (median, 40 weeks vs. 15 weeks in the radiation group; P<0.01), and the patients treated with surgery remained functionally independent longer (median, 38 weeks vs. 8 weeks in the radiation group; P<0.005).

We conclude that patients with cancer and a single metastasis to the brain who receive treatment with surgical resection plus radiotherapy live longer, have fewer recurrences of cancer in the brain, and have a better quality of life than similar patients treated with radiotherapy alone. (N Engl J Med 1990; 322:494-500.)
• 11% of patients thought to have a solitary brain metastasis on workup from a known primary actually harbored a secondary pathology.

• Did not have a large enough N to comment on histology and outcome

• Recurrence 2.5 times more common in the WBRT group

• Survival 2.5 times longer in the surgical arm (40 vs 15 weeks)

• Functional independence markedly prolonged in surgical group (38 vs 8 weeks)
Patchell study

- Level 1 evidence - surgery + WBRT improves outcome compared to WBRT alone for solitary metastatic disease
Clinical Original Contribution

A MULTINSTITUTIONAL OUTCOME AND PROGNOSTIC FACTOR ANALYSIS OF RADIOSURGERY FOR RESECTABLE SINGLE BRAIN METASTASIS

RICHARD M. AUCHTER, M.D.,* JOHN P. LAMOND, M.D.,* EBEN ALEXANDER III, M.D.,§
JOHN M. BUATTI, M.D.,* RICK CHAPPELL, PH.D.,§ WILLIAM A. FRIEDMAN, M.D.,§
TIMOTHY J. KINSELLA, M.D.,* ALLAN B. LEVIN, M.D.,‡ WILIAM R. NOYES, M.D.,*
CHRISTOPHER J. SCHULTZ, M.D.,** JAY S. LOEFFLER, M.D.,¹¹ AND MINESH P. MEHTA, M.D.*

*Department of Human Oncology, †Department of Statistics and Biostatistics, ‡Department of Neurosurgery, University of Wisconsin–Madison, Madison, WI, §Brain Tumor Center, Brigham and Women's Hospital and Joint Center for Radiation Therapy, Boston, MA, †University of Florida Department of Radiation Oncology, and ¹¹Department of Neurosurgery, University of Florida—Gainesville, Gainesville, FL.

**Department of Radiation Oncology Medical College of Wisconsin, Milwaukee, WI.

Purpose: Recent randomized trials of selected patients with single brain metastasis comparing resection followed by whole-brain radiotherapy (WBRT) to WBRT alone have shown a statistically significant survival advantage for surgery and WBRT. A multiinstitutional retrospective study was performed, which identified comparable patients who were treated with stereotactic radiosurgery (RS) and WBRT.

Methods and Materials: The RS databases of four institutions were reviewed to identify patients who met the following criteria: single-brain metastasis; no prior cranial surgery or WBRT; age > 18 years; surgically resectable lesion; Kurnofsky Performance Status (KPS) = 70 at time of RS; nonradioresistant histology. One hundred twenty-two patients were identified who met these criteria. Patients were categorized by: (a) status of the primary, (b) status of non-CNS metastasis, (c) age, (d) baseline KPS (from 70–100), (e) histology, (f) time from diagnosis of primary to the detection of the brain metastasis, (g) gender, and (h) tumor volume. RS was performed with a linear accelerator based technique (peripheral dose range was 10–27 Gy, median was 17 Gy). WBRT was performed in all but five patients who refused WBRT (dose range was 25–40 Gy, median was 37.5 Gy).

Results: The median follow-up for all patients was 123 weeks. The overall local control rate (defined as lack of progression in the RS volume) was 86%. Intracranial recurrence outside of the RS volume was seen in 27 patients (22%). The actuarial median survival from date of RS is 56 weeks, and the 1-year and 2-year actuarial survival rates are 53 and 30%. The median duration of functional independence (sustained KPS ≥ 70) is 44 weeks. Nineteen of 77 deaths were attributed to CNS progression (25% of all deaths). Multivariate analysis revealed the following factors to be statistically significant predictors of survival: baseline KPS (p < .0001) and absence of other sites of metastasis (p = 0.008).

Conclusion: The RS in conjunction with WBRT for single brain metastasis can produce substantial functional survival, especially in patients with good performance status and without extracranial metastasis. These results are comparable to recent randomized trials of resection and WBRT. The advantages of RS over surgery in terms of cost, hospitalization, morbidity, and wider applicability strongly suggest that a randomized trial to compare RS with surgery is warranted.
RPA CLASSIFICATION HAS PROGNOSTIC SIGNIFICANCE FOR SURGICALLY RESECTED SINGLE BRAIN METASTASIS

RAHUL D. TENDULKAR, M.D.,* STEPHANIE W. LIU, B.A.,† GENE H. BARNETT, M.D.,‡
MICHAEL A. VOGELBAUM, M.D., PH.D.,‡ STEVEN A. TOMS, M.D., M.P.H.,‡ TAO JIN, M.S.,§
AND JOHN H. SUH, M.D.*

Departments of *Radiation Oncology, †Neurosurgery, and §Biostatistics, Brain Tumor Institute, Cleveland Clinic, Cleveland, OH and ‡Northwestern University Feinberg School of Medicine, Chicago, IL

Purpose: To retrospectively evaluate prognostic factors that correlate with overall survival among patients with a surgically resected single brain metastasis.

Methods and Materials: An Institutional Review Board–approved database of the Cleveland Clinic Brain Tumor Institute was queried for patients with a single brain metastasis treated by surgical resection between February 1984 and January 2004. The primary endpoint was overall survival from the date of surgery by the Kaplan-Meier method.

Results: A total of 271 patients were included. Statistically significant variables for improved survival on multivariate analysis included age <65 years, lack of extracranial metastases, control of primary tumor, histology (non–small-cell lung carcinoma), and use of stereotactic radiosurgery. The median survival for all patients was 10.2 months. Survival of patients in recursive partitioning analysis (RPA) class 1 was better (21.4 months) than those in RPA class 2 (9.0 months, \(p < 0.001 \)), RPA class 3 (8.9 months, \(p = 0.15 \)), or the combined group of RPA classes 2 and 3 (9.0 months, \(p < 0.001 \)). Patients had a median survival of 10.6 months after documented gross total resection and 8.7 months after subtotal resection, which approached statistical significance (\(p = 0.07 \)). Those who were treated with stereotactic radiosurgery had a median survival of 17.1 months, which was greater than patients who were not treated with stereotactic radiosurgery (8.9 months, \(p = 0.006 \)).

Conclusions: This analysis supports the prognostic significance of the RPA classification in patients with a single brain metastasis who undergo surgical resection and adjuvant therapy. RPA class 1 patients have a very favorable prognosis with a median survival of 21.4 months. © 2006 Elsevier Inc.
Auchter study

• RPA class 1 patients

Recursive Partitioning Analysis Classes for Brain Mets

<table>
<thead>
<tr>
<th></th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karnofsky performance</td>
<td>≥ 70</td>
<td>≥ 70</td>
<td>< 70</td>
</tr>
<tr>
<td>score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary (systemic) tumor</td>
<td>controlled</td>
<td>uncontrolled</td>
<td>uncontrolled</td>
</tr>
<tr>
<td>status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age in years</td>
<td>≤ 65</td>
<td>> 65</td>
<td>> 65</td>
</tr>
<tr>
<td>Extracranial metastases</td>
<td>none</td>
<td>present</td>
<td>present</td>
</tr>
</tbody>
</table>
RPA 1 patients

• Surgery + WBRT = 21 months (Tendulkar, et al) (12 months including RPA I & II)

• SRS + WBRT = 12.2 months (Auchter, et al.) Likely involved some RPA II patients
<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Method</th>
<th>Complete resection %</th>
<th>Tumor size</th>
<th>Median survival</th>
<th>Local control</th>
<th>Median time to local failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bindal et al. (1996) [63]</td>
<td>SRS ± WBRT</td>
<td>NR</td>
<td>1.96 cm³</td>
<td>16.4</td>
<td>61%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surgery ± WBRT</td>
<td>NR</td>
<td>NR</td>
<td>7.2</td>
<td>87%</td>
<td></td>
</tr>
<tr>
<td>Schoggl et al. (2000) [66]</td>
<td>SRS ± WBRT</td>
<td>NR</td>
<td>7800 mm³</td>
<td>52% at 1 year</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surgery ± WBRT</td>
<td>NR</td>
<td>12500 mm³</td>
<td>44% at 1 year</td>
<td>83%</td>
<td></td>
</tr>
<tr>
<td>O’Neill et al. (2003) [64]</td>
<td>SRS ± WBRT</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surgery ± WBRT</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>42%</td>
<td></td>
</tr>
<tr>
<td>Rades et al. (2009) [68]</td>
<td>SRS + WBRT</td>
<td>84%</td>
<td>NR</td>
<td>61%</td>
<td>87%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surgery + WBRT</td>
<td>NR</td>
<td>NR</td>
<td>53%</td>
<td>56%</td>
<td></td>
</tr>
<tr>
<td>Roos et al. (2011) [69]</td>
<td>SRS + WBRT</td>
<td>6.2 mo</td>
<td>NR</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surgery + WBRT</td>
<td>2.8 mo</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kocher et al. (2011) [59]</td>
<td>SRS + WBRT</td>
<td>100%</td>
<td>Tumor larger</td>
<td>NR</td>
<td>81%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surgery + WBRT</td>
<td>Tumor larger</td>
<td>NR</td>
<td>73%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NR, not reported; WBRT, whole brain radiotherapy; SRS, stereotactic radiosurgery; mo, months.
The role of stereotactic radiosurgery in the management of patients with newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline

Mark E. Linskey · David W. Andrews · Anthony L. Asher · Stuart H. Burri · Douglas Kondziolka · Paula D. Robinson · Mario Ammirati · Charles S. Cobbs · Laurie E. Gaspar · Jay S. Loeffler · Michael McDermott · Minesh P. Mehta · Tom Mikkelsen · Jeffrey J. Olson · Nina A. Paleologos · Roy A. Patchell · Timothy C. Ryken · Steven N. Kalkanis

The role of surgical resection in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline

Steven N. Kalkanis · Douglas Kondziolka · Laurie E. Gaspar · Stuart H. Burri · Anthony L. Asher · Charles S. Cobbs · Mario Ammirati · Paula D. Robinson · David W. Andrews · Jay S. Loeffler · Michael McDermott · Minesh P. Mehta · Tom Mikkelsen · Jeffrey J. Olson · Nina A. Paleologos · Roy A. Patchell · Timothy C. Ryken · Mark E. Linskey
Eligibility criteria

- Published in English.
- Patients with newly diagnosed brain metastases.
- Fully-published (i.e., not in abstract form) peer-reviewed primary comparative studies. (These included the following comparative study designs for primary data collection: RCTs, non-randomized trials, cohort studies, and case-control studies).
- Study comparisons include one or more of the following (local RT = fractionated radiotherapy localized to the tumor):
 - WBRT vs. WBRT + SRS
 - SRS vs. WBRT + SRS
 - SRS vs. WBRT
 - SRS ± WBRT or local RT vs. Resection ± WBRT or local RT
 - SRS ± Resection vs. WBRT ± Resection
 - Single dose SRS ± WBRT vs. Multi-dose SRS ± WBRT
- Number of study participants with newly diagnosed brain metastases ≥5 per study arm for at least two of the study arms.
- Baseline information on study participants is provided by treatment group in studies evaluating interventions exclusively in patients with newly diagnosed brain metastases. For studies with mixed populations (i.e., includes participants with conditions other than newly diagnosed brain metastases), baseline information is provided for the intervention sub-groups of participants with newly diagnosed brain metastases.

SRS

Surgery

Eligibility criteria

- Published in English.
- Patients with newly diagnosed brain metastases.
- Fully-published (i.e., not in abstract form) peer-reviewed primary comparative studies. (These included the following comparative study designs for primary data collection: RCTs, non-randomized trials, cohort studies and case-control studies).
- Study comparisons include one or more of the following:
 - Surgery versus WBRT
 - Surgery versus surgery + WBRT
 - Surgery ± WBRT or partial brain RT versus SRS ± WBRT or partial brain RT
 - Surgery versus surgery + SRS
 - Surgery + WBRT versus surgery + SRS
 (Where SRS could be single session and fractionated stereotactic radiotherapy)
- Number of study participants with a newly diagnosed brain metastasis ≥5 per study arm for at least two of the study arms.
- Baseline information on study participants is provided by treatment group in studies evaluating interventions exclusively in patients with a newly diagnosed brain metastasis. For studies with mixed populations (i.e., includes participants with conditions other than newly diagnosed brain metastases), baseline information is provided for the intervention sub-groups of participants with a newly diagnosed brain metastasis.
Question
- Should patients with newly-diagnosed metastatic brain tumors undergo open surgical resection versus whole brain radiation therapy (WBRT) and/or other treatment modalities such as radiosurgery, and in what clinical settings?

Target population
These recommendations apply to adults with a newly diagnosed single brain metastasis amenable to surgical resection.

- Does surgical resection in addition to WBRT improve outcomes when compared with WBRT alone?

Target population
This recommendation applies to adults with a newly diagnosed single brain metastasis amenable to surgical resection; however, the recommendation does not apply to relatively radiosensitive tumors histologies (i.e., small cell lung cancer, leukemia, lymphoma, germ cell tumors and multiple myeloma).
15 studies met criteria to address these questions
Surgical resection ± WBRT or partial brain RT versus stereotactic radiosurgery (SRS) ± whole or partial brain RT

- 1 Randomized Control and 9 Retrospective Cohort Studies

- Surgical Resection + WBRT vs SRS + WBRT
 - No prospective studies
 - 4 Retrospective Cohort Studies
 - A majority, but not all subjects received WBRT
 - 3 studies showed no difference in survival
 - 1 study showed survival was significantly longer for patients in the surgery + WBRT arm. Freedom from local recurrence was also significantly longer in the surgery arm in this study.
 - 3 other studies, however, showed freedom from local recurrence trended to benefit the SRS arm.
 - Class II evidence exists for these studies, but all are retrospective, each yielded conflicting results in terms of overall survival and duration of freedom from local recurrence.
 - Class II evidence supporting surgery over SRS in solitary mets in the following scenarios
 - Larger lesions (>3cm in max. diameter)
 - Lesions causing significant mass effect (>1 cm shift)
 - Lesions causing symptomatic compression
 - Class II evidence supporting SRS over surgery in solitary mets in the following scenario
 - Surgically inaccessible lesions <3cm in max. diameter
• 40 year-old female diagnosed with Stage IIb (T2, N1, M0) diagnosed 9 months ago.
• Treated with mastectomy and CTX.
• 1 week history of headache and seizure
Diagnosis & Treatment ?
• Acute disseminated encephalomyelitis (ADEM)
• Retrospectively acknowledged flu vaccine 3 weeks prior
• 60 year-old female 3 weeks post-op from robotic hysterectomy, BSO and nodal dissection for newly diagnosed Stage IIIc Ovarian Cancer (T3c, N1, M0)

• Now complaining of headache
Diagnosis and Treatment ?
Brain Abscess
• 75 year-old male with history of Non-small Cell Lung Ca diagnosed 14 months ago as IIb (T2b, N1, M0) treated with resection followed by CTX. 3 months ago noted to have progressive hilar adenopathy. XRT to region administered.

• Presents with aphasia and right-sided weakness that began 4 days ago and hasn’t improved.
Diagnosis and Treatment?
• Stroke
• 65 year-old male diagnosed with renal cell CA 1 year ago. Treated with nephrectomy only (Stage 1 disease).

• 3 months ago found to have a “new spot” in his lungs. Treated with XRT and began CTX and stable on repeat imaging.

• Now presents with a generalized seizure, 3 week headache and Left drift.
Diagnosis and Treatment?
• 50 year-old male diagnosed with Stage IV Renal Cell Ca 6 months ago treated by nephrectomy and CTX. Stable disease with 1 week history of headache.
Diagnosis and Treatment ?
Renal Cell Metastasis
Our Algorithm

Solitary Brain Metastasis

Symptomatic, LE > 3 months
Diagnosis in Doubt
> 3 cm and/or >1 cm shift

<3 cm / small volume
Asymptomatic
LE < 3 months

Surgery for resection

Choice
Yes

Yes

No

Diagnosis in Doubt

SRS

MRI q 2 months

Reliable Follow-up

<3 cm, low vol

no, <3 cm, low vol

no >3 cm, high vol

Unreliable Follow-up

Standard

WBRT

highly functional, controlled systemic, radioresistant disease (option)

Palliation

Resectable ?

No
Summary

- Diagnosis in doubt
- $>3\text{cm}$
- Symptomatic mass effect
- $>1\text{cm}$ shift
- ? Role for Rxn + SRS for solitary disease
RSXN + SRS

- **Active** NCT01891318 *Neoadjuvant Radiosurgery for Resectable Brain Metastases: Phase I/II Study*
 Radiosurgery followed by surgical resection
 Cleveland Clinic Taussig Cancer Institute & Case Medical Center, University Hospitals Seidman Cancer Center
 Principal Investigator: Andrew Sloan, MD

- **Active** NCT00950001 *Efficacy of Post-Surgical Stereotactic Radiosurgery for Metastatic Brain Disease: A Randomized Trial*
 Evaluate benefit of post-surgical stereotactic radiosurgery (SRS) on the resection bed in providing 6 month local control (decreasing the risk of local tumor recurrence) when compared to surgical resection alone.
 M.D. Anderson Cancer Center
 Principal Investigator: Anita Mahajan, MD UT MD Anderson Cancer Center
 Principal Investigator: Ganesh Rao, MD UT MD Anderson Cancer Center

- **Completed** NCT00587964 *Phase II Trial of Stereotactic Radiosurgery Boost Following Surgical Resection for Brain Metastases.*
 Surgery followed by SRS 2-8 wks postop as single fraction. 1-2 resected mets
 Memorial Sloan-Kettering Cancer Center
 Principal Investigator: Kathryn Beal, MD

- **Active** NCT01372774 *A Phase III Trial of Post-Surgical Stereotactic Radiosurgery (SRS) Compared With Whole Brain Radiotherapy (WBRT) for Resected Metastatic Brain Disease.*
 North Central Cancer Treatment Group
 National Cancer Institute (NCI)
 Principal Investigator: Paul D. Brown, MD
 M.D. Anderson Cancer Center

- **Completed** NCT00814463 *Phase II Single-arm Study of Post-operative Stereotactic Radiosurgery for Brain Metastases.*
 Duke Comprehensive Cancer Center
 Principal Investigator: John H. Sampson, MD, PhD
 Duke University

- **Active** NCT01395407 *Phase I Trial of Stereotactic Radiosurgery Following Surgical Resection of Intra-axial Brain Metastases.*
 Emory University Hospital
 Principal Investigator: Ian Crocker, MD
 Emory University

- **Active** NCT01535209 *Phase 3 Study of Stereotactic Radiotherapy of the Postoperative Resection Cavity Versus Whole-Brain Irradiation After Surgical Resection of Single Brain Metastasis.*
 Maria Sklodowska-Curie Memorial Cancer Center, Poland
 Principal Investigator: Lucyna Kepka, Prof